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Computation of the Lyapunov spectrum for continuous-time dynamical systems and discrete
maps
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In this paper, we describe in detail a method of computing Lyapunov exponents for a continuous-time
dynamical system and extend the method to discrete maps. Using this method, a partial Lyapunov spectrum
can be computed using fewer equations as compared to the computation of the full spectrum, there is no
difficulty in evaluating degenerate Lyapunov spectra, the equations are straightforward to generalize to higher
dimensions, and the minimal set of dynamical variables is used. Explicit proofs and other details not given in
previous work are included here.@S1063-651X~99!07212-8#
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I. INTRODUCTION

Chaos plays an important role in a large class of dyna
cal systems. The question of detecting and quantifying ch
has therefore become an important one. The spectrum
Lyapunov exponents has proven to be the most useful
namical diagnostic for chaotic systems@1# and several meth
ods exist for computing these exponents@1–5#. However, no
single method appears to be optimal. For example, QR
singular value decomposition~SVD! methods@2,3# require
frequent renormalization~to combat exponential growth o
the separation vector between the fiducial and nearby tra
tories! and reorthogonalization~to overcome the exponentia
collapse of initially orthogonal separation vectors onto
direction of maximal growth!. The existing continuous ver
sions of the QR and SVD methods also suffer from the
ditional disadvantage of being unable to compute the pa
Lyapunov spectrum using a fewer number of equatio
operations than required for the computation of the full sp
trum @3#. Further, the continuous SVD method breaks do
when computing degenerate Lyapunov spectra@3#. The sym-
plectic method@4# is applicable only to Hamiltonian system
~and a few generalizations thereof! and has proven difficult
to extend to systems of moderate size, though this is poss
in principle @6#. It also does not permit easy evaluation
partial Lyapunov spectra.

In an earlier paper@7#, we had briefly outlined a metho
for computing Lyapunov exponents for continuous-time d
namical systems. We proposed a general method which

*Also at Centre for Theoretical Studies, Indian Institute of S
ence and Honorary Faculty Member, Jawaharlal Nehru Cente
Advanced Scientific Research, Bangalore, India. Electronic add
rangaraj@math.iisc.ernet.in

†Electronic address: habib@lanl.gov
‡Electronic address: ryne@lanl.gov
PRE 601063-651X/99/60~6!/6614~13!/$15.00
i-
os
of
y-

d

c-

e

-
al
/
-

n

le

-
a-

lytically obviates the need for rescaling and reorthogonali
tion. Our method did away with the other shortcomin
listed above: A partial Lyapunov spectrum could be co
puted using fewer equations as compared to the computa
of the full spectrum, there was no difficulty in evaluatin
degenerate Lyapunov spectra, the equations were straigh
ward to generalize to higher dimensions, and the met
used the minimal set of dynamical variables. Since o
method was based on exact differential equations for
Lyapunov exponents, global invariances of the Lyapun
spectrum were preserved in principle.

In the present paper, we describe in detail the ab
method for continuous-time dynamical systems. In the e
lier paper, some of the advantages of our method w
merely stated without any proofs. Here we provide analyti
proofs of these statements; these are given in the Append
since they are quite involved. In the earlier paper we h
considered only two- and three-dimensional examples.
this paper, we extend this up to six dimensions. More imp
tantly, we generalize our method to discrete maps while
taining all the advantages listed above.

II. CONTINUOUS-TIME DYNAMICAL SYSTEMS

We briefly recall the method presented in our earlier p
per @7#. Consider ann-dimensional continuous-time dynam
cal system,

dz

dt
5F~z,t !, ~2.1!

wherez5(z1 ,z2 , . . . ,zn) andF is ann-dimensional vector
field. Let Z(t)5z(t)2z0(t) denote deviations from the fidu
cial trajectoryz0(t). Linearizing Eq.~2.1! around this trajec-
tory, we obtain

dZ

dt
5DF„z0~ t !,t…•Z, ~2.2!

-
or
ss:
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PRE 60 6615COMPUTATION OF THE LYAPUNOV SPECTRUM FOR . . .
whereDF denotes then3n Jacobian matrix.
Integrating the linearized equations along the fiducial t

jectory yields the tangent mapM „z0(t),t… which takes the
initial variables Z in into the time-evolved variablesZ(t)
5M (t)Z in @the dependence ofM on the fiducial trajectory
z0(t) is understood#. Let L be ann3n matrix given byL

5 limt→`(MM̃ )1/2t, where M̃ denotes the matrix transpos
of M. The Lyapunov exponents then equal the logarithm
the eigenvalues ofL @1#.

It is clear thatM is of central importance in the evaluatio
of Lyapunov exponents. Its evolution equation can be ea
derived:

dM

dt
5DFM . ~2.3!

As is well known @8#, the matrixM can be written as the
product M5QR of an orthogonaln3n matrix Q and an
upper-triangularn3n matrix R with positive diagonal en-
tries. Substituting this into Eq.~2.3!, we obtain

Q̇R1QṘ5DFQR, ~2.4!

where the overdot denotes a time derivative. Multiplying t
above equation byQ̃ from the left andR21 from the right,
we get

Q̃Q̇1ṘR215Q̃DFQ. ~2.5!

Note thatQ̃Q̇ is a skew~anti!symmetric matrix for any or-
thogonal matrixQ andṘR21 is still an upper-triangular ma
trix.

In our method, we employ an easy to obtain explicit re
resentation of the orthogonal matrixQ from group represen
tation theory@9#. One advantage is that a minimum numb
of variables is used to characterize the system:n(n21)/2 in
Q and furthern variables inR, for a total ofn(n11)/2. The
matrix Q is represented as a product ofn(n21)/2 orthogo-
nal matrices, each of which corresponds to a simple rota
in the (i -j th plane (i , j ) @9#. Denoting the matrix corre-
sponding to this rotation byQ( i j ), its matrix elements are
given by

Qkl
( i j )51 if k5 lÞ i , j

5 cosf if k5 l 5 i or j

5 sinf if k5 i , l 5 j

52 sinf if k5 j , l 5 i

50 otherwise. ~2.6!

Heref denotes an angle variable. Thus, then3n matrix Q
is represented by

Q5Q(12)Q(13)
•••Q(1n)Q(23)

•••Q(n21,n). ~2.7!

HenceQ is parametrized byn(n21)/2 angles which we de
note byu i „i 51, . . . ,n(n21)/2…. These angles will be col
lectively denoted byu.

Here Q is represented by a special orthogonal mat
~with determinant equal to11) because of the choice o
-

f

ly

e

-

r

n

initial conditions. We choose the identity matrix as the init
orthogonal matrix. That is, we start with a matrix from th
SO(n) component of the group of orthogonal matrices. Sin
we are dealing with continuous-time dynamical systems
the present, due to continuity, we remain in the same co
ponent for all time. Hence, we are justified in choosingQ to
be a SO(n) matrix. For large values ofn, directly using Eq.
~2.7! to obtain the representation ofQ can be cumbersome
In Appendix A, we give a prescription for calculating th
elements of a SO(n) matrix in a more direct fashion.

Since the upper-triangular matrixR has positive diagona
entries, it can be represented as follows:

R5S el1 r 12 ••• ••• r 1n

0 el2 r 23 ••• r 2n

A A A A A

0 0 0 0 eln

D . ~2.8!

The quantitiesl i will be shown to be intimately related to
the Lyapunov exponents. Our final equations will be in ter
of the l i which already appear in the exponent, thus rem
ing the need for rescaling. The quantitiesr i j represent the
supradiagonal terms inR.

Using the above representation ofR, we obtain

ṘR215S l̇1 r 128 ••• ••• r 1n8

0 l̇2 r 238 ••• r 2n8

A A A A A

0 0 0 0 l̇n

D . ~2.9!

The quantitiesr i j8 are of no concern since they are not pres
in the final equations.

Substituting the above expression in Eq.~2.5! and com-
paring diagonal terms on both sides, we obtain

l̇ i5Sii , i 51,2, . . . ,n, ~2.10!

whereS[Q̃DFQ. This is easily seen to be true sinceQ̃Q̇ is
an antisymmetric matrix with diagonal entries zero a
ṘR21 has l̇ i as the diagonal entries. The Lyapunov exp
nents are given by@3#

lim
t→`

l i

t
. ~2.11!

In general, in the limitt→` the Lyapunov exponents con
stitute a monotically decreasing sequence. Thus,
Lyapunov exponents can be obtained by solving the diff
ential equations given in Eq.~2.10! for long times. However,
since the right-hand side depends on the anglesu i , we also
require differential equations governing the evolution
these angles.

Differential equations for the angles can be obtained
comparing the subdiagonal elements in Eq.~2.5!. Since
ṘR21 has zero subdiagonal entries, this gives

~Q̃Q̇!215S21,~Q̃Q̇!315S31, . . . ,~Q̃Q̇!n,n215Sn,n21 .
~2.12!
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Note that the above equations are decoupled from the e
tions forl i . This avoids potential problems with degenera
Lyapunov spectra. The above set of differential equations
the angles can be easily set in the following more stand
form:

u̇ i5gi~u!, i 51,2, . . . ,n~n21!/2. ~2.13!

Equations~2.10! and~2.13! form a system ofn(n11)/2 or-
dinary differential equations that can be solved to obtain
Lyapunov exponents. Since the differential equations are
the angles and not directly for the matrix elements ofQ,
numerical errors can never lead to loss of orthogonal
Consequently, the need for reorthogonalization is obviate
our method.

Our system of differential equations has another attrac
feature. The equation forl1 depends only on the first (n
21) u i ’s. Therefore, if one is interested in only the large
Lyapunov exponent, one needs to solve onlyn equations@as
opposed ton(n11)/2 for the full spectrum#. The equation
for l2 depends only on the first (2n23) u i ’s. Therefore, to
obtain the first two Lyapunov exponents, one needs to so
only (2n21) equations. In general, to solve for the firstm

FIG. 1. This figure shows the evolution ofl1 /t as a function of
time t for the driven van der Pol oscillator. The parameter valu
used ared525, b55, andw52.466.

FIG. 2. This figure shows the evolution ofl2 /t as a function of
time t for the driven van der Pol oscillator. The parameter valu
used ared525, b55, andw52.466.
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Lyapunov exponents, one has to solvem(2n2m11)/2
equations which is always less thann(n11)/2 ~the total
number of equations! for m,n. This is in contrast to the
situation for the conventional continuous QR or SVD me
ods, where it is computationally costlier to evaluate a par
spectrum once a threshold is crossed@3#. The proof of the
above important statement is quite involved: It can be fou
in Appendix B.

Another interesting feature of this method is the follow
ing:

s

s

FIG. 3. This figure exhibits the polar plot ofl1 /t as a function
of u(t) for the driven van der Pol oscillator. The parameter valu
used ared525, b55, andw52.466.

FIG. 4. This figure exhibits the polar plot ofl2 /t as a function
of u(t) for the driven van der Pol oscillator. The parameter valu
used ared525, b55, andw52.466.
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(
i 51

n

l̇ i5(
i 51

n

~Q̃DFQ! i i ~2.14!

5(
i 51

n

(
j 51

n

(
k51

n

Qji DFjkQki ~2.15!

5(
j 51

n

(
k51

n

DFjkS (
i 51

n

Qji QkiD . ~2.16!

SinceQQ̃5I (Q being an orthogonal matrix!, ( i 51
n Qji Qki

5d jk , i , j 51,2, . . . ,n. Therefore, we get

l̇11l̇21•••1l̇n5DF111DF221•••1DFnn .
~2.17!

This relation can be used to speed up the numerical inte
tion of the differential equation forln .

To illustrate the application of the method to a syste
with two degrees of freedom, we consider the driven van
Pol oscillator:
a

he
co
a-

r

z185z2 ,
~2.18!

z2852d~12z1
2!z22z11b coswt.

We have already considered this system in our earlier pa
@7#. Here we present more detailed results for the system.
the parameter valuesd525, b55, andw52.466, the re-
sults for the Lyapunov exponents are shown in Figs. 1 an
The results are in agreement with values obtained by
existing methods. In Fig. 3, we plotl1 /t as a function of
u(t) in a polar plot. The figure shows that we obtain a circ
asymptotically. This suggests that our variables are akin
the ‘‘action-angle’’ variables encountered in classical m
chanics. At present, methods for exploiting this feature
speed up the convergence rate of the Lyapunov expon
are being investigated. In Fig. 4, we exhibit the polar plot
l2 /t versusu. Here, the circle is approached even fas
asymptotically.

For then54 case, we have to generalize the equatio
given in our earlier paper@7#. The dominant Lyapunov ex
ponent for then54 case is given by integrating the follow
ing equation numerically~along with equations foru1 , u2,
and u3 which we have not included below! for long times
and dividing by time:
l 1̇5 cos2u1 cos2u2 cos2u3d f111 sin2u1 cos2u2 cos2u3d f221 sin2u2 cos2u3d f331 sin2u3d f44

2
1

2
sin2u1 cos2u2 cos2u3~d f121d f21!2

1

2
cosu1 sin 2u2 cos2u3~d f131d f31!2

1

2
cosu1 cosu2 sin 2u3~d f141d f41!

1
1

2
sinu1 sin 2u2 cos2u3~d f231d f32!1

1

2
sinu1 cosu2 sin 2u3~d f241d f42!1

1

2
sinu2 sin 2u3~d f341d f43!. ~2.19!
t of
ame

as

n in
are

as
ec-
x-
We apply this method to two systems. We start with
example of a system with the Hamiltonian

H5
px

21py
2

2
1

x2y2

2
1

x41y4

32
. ~2.20!

The Hamilton equations of motion are

ẋ5
]

]px
H5px , ~2.21!

ṗx52
]

]x
H52~xy21x3/8!, ~2.22!

ẏ5
]

]py
H5py , ~2.23!

ṗy52
]

]y
H52~x2y1y3/8!. ~2.24!

Two of the Lyapunov exponents tend to zero and the ot
two are the negative of each other, as expected. The se
example is given by
n

r
nd

z185z2 ,

z2852d~12z1
2!z22z11b coswt,

~2.25!
z385z4 ,

z4852d~12z3
2!z42z31b coswt,

where the parameter values are the same as in then52 case.
The values of the Lyapunov exponents of the above se
equations, obtained by our method, are found to be the s
as those of the van der Pol oscillator, repeated twice,
expected.

Our method has been further extended to the casen56. It
has been applied to a generalization of the example give
Eq. ~2.20! to three degrees of freedom. Results obtained
as expected.

III. LYAPUNOV EXPONENTS FOR DISCRETE MAPS

In the preceding section, we considered our method
applied to continuous-time dynamical systems. In this s
tion, we generalize our method of computing Lyapunov e
ponents to discrete maps.

Let us consider the following nonlinear map:
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z~n11!5F„z~n!…, ~3.1!

whereF: Rm→Rm is a differentiable vector function andz
is an m vector. Let the matrix (]Fi /]zj ) of partial deriva-
tives of the componentsFi at z be denoted byDF(z). Then
the corresponding matrix of partial derivatives for thenth
iterateFn of F is given by

]~Fn! i

]zj
5DF~Fn21z!•••DF„F~z!…DF~z!. ~3.2!

Let

An5DF~Fn21z!•••DF„F~z!…DF~z!, ~3.3!

which implies

An5DF„z~n21!…•••DF„z~1!…DF„z~0!…. ~3.4!

Then

An115DF„z~n!…An . ~3.5!

Similar to the continuous case,An can be decompose
into a product of an orthogonal matrix and an upp
triangular matrix with positive diagonal elements. That is

Qn11Rn115DF„z~n!…QnRn , ~3.6!

where Qn ,Qn11PO(m) and Rn and Rn11 are the upper-
triangular matrices with positive diagonal elements. L
$Rii

(n) ,i 51, . . . ,m% be the set of diagonal elements ofRn .
Then

lim
n→`

ln Rii
(n)

n
5l i8 ,

where$l i8 ,i 51, . . . ,m% are the Lyapunov exponents.
From Eq.~3.6!, we have

Rn11Rn
215Q̃n11DFQn , ~3.7!

where the left-hand side is an upper-triangular matrix w
Rii

(n11)/Rii
(n) ( i 51,2, . . . ,m) as the diagonal elements. Th

dependence ofDF on z(n) is understood. SinceRii
( j ) ( j

5n,n11;i 51,2,3, . . . ,m) are positive, they can be repre
sented by expli

(j)(j5n,n11; i51,2,3, . . . ,m). Therefore,
the diagonal elements of the matrixRn11Rn

21 are given by
expli

(n11)2li
(n) , i 51,2,3, . . . ,m.

From Eq. ~3.7!, the equations foru i
(n11)’s are given by

the following set of equations~sinceRn11Rn
21 is an upper

triangular matrix!:

~Q̃n11DFQn! lk50, l .k, ~3.8!

wherel 52,3, . . . ,m andk51,2,3, . . . ,l 21. To solve these
equations foru i

(n11)’s, we have to first parametrize theQn’s.
For continuous-time dynamical systems, because of cont
ity arguments we were able to parametrizeQn as a SO(n)
matrix. On the other hand, in the discrete case, theQn’s may
belong to either of the following: SO(m) or the component
with determinant21 @denoted by O8(m)]. Therefore, the
-

t

u-

following four combinations have to be taken into accou
while developing the algorithm for computing the angles a
subsequently the Lyapunov exponents:~i! QnP SO(m) and
Qn11P SO(m), ~ii ! QnP SO(m) and Qn11P O8(m),
~iii ! QnP O8(m) and Qn11P SO(m), ~iv! QnP O8(m)
andQn11P O8(m).

To take into account the above four cases, we define

Qj5Qj8Pj , j 5n,n11, ~3.9!

where Qj8P SO(m) is parametrized usingu i
( j )

„j 5n,n
11; i 51,2, . . . ,m(m21)/2… @cf. Eq. ~2.7!#. The m3m
matricesPj ( j 5n,n11) are diagonal matrices with diagon
elements (Pj )kk51 ~or 21), k51,2, . . . ,m. Thus, if Qj
P SO(m), thenPj has zero or an even number of21’s and
if QjP O8(m), thenPj has an odd number of21’s.

For computation of the angles, we now show that we c
still parametrizeQn’s as SO(n) matrices even in the discret
case. From Eq.~3.8!, we have@using Eq.~3.9! for Qn]

~Q̃n11DFQn! lk

5(
r 51

m

~Q̃n11! lr ~DFQn!rk

5 (
r ,s51

m

~Qn118 Pn11!rl DFrs~Qn8Pn!sk

5 (
r ,s,u,v51

m

~Qn118 !ru~Pn11!ulDFrs~Qn8!sv~Pn!vk

5 (
r ,s,u,v51

m

~Qn118 !rl ~Pn11! l l DFrs~Qn8!sk~Pn!kk

@since~Pn! i j 50 ; iÞ j #

5~Pn11! l l ~Pn!kk (
r ,s51

m

~Q̃n118 !rl DFrs~Qn8!sk

5~Pn11! l l ~Pn!kk~Q̃n118 DFQn8! lk . ~3.10!

Thus,

~Q̃n11DFQn! lk50, ~3.11!

which implies

~Q̃n118 DFQn8! lk50, ~3.12!

where l .k, l 52,3, . . . ,m, and k51,2, . . . ,l 21. There-
fore, for solving foru j

(n11)’s @ j 51,2, . . . ,m(m21)/2#, it is
sufficient to solve Eq.~3.12! instead of Eq.~3.8!, irrespective
of whether theQj ’s belong to SO(m) or O8(m).

But the Qj ’s do matter while deriving the equations fo
l j

(n11)’s. To compute these, we compare the diagonal e
ments in Eq.~3.7! and substitute Eq.~3.9! for Qn11,
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expl j
(n11)2l j

(n)5~Q̃n11DFQn! j j

5(
r 51

m

~Qn11!r j ~DFQn!r j

5(
r 51

m

~Qn118 Pn11!r j ~DFQn!r j

5 (
r ,u51

m

~Qn118 !ru~Pn11!u j~DFQn!r j

5(
r 51

m

~Qn118 !r j ~Pn11! j j ~DFQn!r j

@since~Pn11!u j50; uÞ j #

5~Pn11! j j S (
r 51

m

~Qn118 !r j ~DFQn!r j D
5~Pn11! j j ~Q̃8n11DFQn! j j , ~3.13!

where Qn and DF are already known andQn118 is also
known from Eq.~3.12! (u j

(n11)’s are the angle variables o
Qn118 ).

If ( Q̃8n11DFQn) j j ,0 (.0), then (Pn11) j j 521(1).
But this amounts to taking the absolute value of the rig
hand side of Eq.~3.13!. Thus,

expl j
(n11)2l j

(n)5u~Q̃8n11DFQn! j j u. ~3.14!

But @using Eq.~3.9! for Qn]

u~Q̃n118 DFQn! j j u5U(
r 51

m

~Q̃n118 DF! j r ~Qn8Pn!r jU
5U (

r ,s51

m

~Q̃n118 DF! j r ~Qn8!rs~Pn!s jU
5U~Pn! j j S (

r 51

m

~Q̃n118 DF! j r ~Qn8!r jU D
@since~Pn!s j50; sÞ j #

5u~Pn! j j ~Q̃n118 DFQn8! j j u

5u~Q̃n118 DFQn8! j j u, ~3.15!

where we have used the fact that (Pn) j j is equal to 1 or
21 in the last step.

Thus, for finding l j
(n11)’s ( j 51, . . . ,m), we have to

solve the followingm equations:

l j
(n11)5l j

(n)1 lnu~Q̃n118 DFQn8! j j u for j 51,2, . . . ,m
~3.16!

with the following m(m21)/2 equations foru (n11)’s:

~Q̃n118 DFQn8! lk50, l .k, ~3.17!
-

where l 52,3, . . . ,m, k51,2, . . . ,l 21, and where
Qn118 , Qn8, and SO(m) are matrices.

We illustrate the working of this method by takingm
52. The SO~2! matricesQi8 ( i 5n,n11) are parametrized
as

S cosu ( i ) sinu ( i )

2 sinu ( i ) cosu ( i )D . ~3.18!

Further, letDF be parametrized as

DF5S d f11 d f12

d f21 d f22
D , ~3.19!

and letRn be parametrized as~usingl andm for notational
simplicity!

Rn5S el(n)
*

0 em(n)D . ~3.20!

Here * is used to denote quantities which we are not int
ested in and which will not enter into our final expression

Substituting the above representations in Eq.~3.6!, we get

S cosu (n11) *

2 sinu (n11) * D S el(n11)
*

0 em(n11)D
5S d f11 d f12

d f21 d f22
D S cosu (n) *

2 sinu (n) * D S el(n)
*

0 em(n)D .

Carrying out the matrix multiplications, we get

S cosu (n11)el(n11)
*

2 sinu (n11)el(n11)
*
D

5S ~d f11cosu (n)2d f12sinu (n)!el(n)
*

2~d f22sinu (n)2d f21cosu (n)!el(n)
*
D . ~3.21!

That is,

sinu (n11)el(n11)
5~d f22sinu (n)2d f21cosu (n)!el(n)

,
~3.22!

cosu (n11)el(n11)
5~d f11cosu (n)2d f12sinu (n)!el(n)

.
~3.23!

Dividing Eq. ~3.22! by Eq. ~3.23!, we have

u (n11)5tan21S d f22sinu (n)2d f21cosu (n)

d f11cosu (n)2d f12sinu (n)D . ~3.24!

The above equations are used to calculate theu (n11)’s. Con-
sequently, the matrixQ(n11)8 is also fully determined.

We are now in a position to calculatel (n11) andm (n11).
We have from Eq.~3.7!,
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S el(n11)2l(n)
*

0 em(n11)2m(n)D
5S ~Q̃n11DFQn!11 *

0 ~Q̃n11DFQn!22
D . ~3.25!

Equating the elements of the matrices on both sides and
ing the arguments given prior to Eq.~3.16!, we have

l (n11)5l (n)1 lnu~Q̃n118 DFQn8!11u, ~3.26!

m (n11)5m (n)1 lnu~Q̃n118 DFQn8!22u. ~3.27!

Since Q8 depends only onu, and u in turn does not
depend on eitherl or m, the presence ofQn118 on the right-
hand side of the above equations does not create any p
lems. The Lyapunov exponentsl8 andm8 are given by

l85 lim
n→`

l (n)

n
, ~3.28!

m85 lim
n→`

m (n)

n
. ~3.29!

As an example of them52 case, we consider the Heno
map,

xn11512axn
21yn , ~3.30!

yn115bxn . ~3.31!

ThenDF(xn ,yn) is given by

S 22axn 1

0.3 0D . ~3.32!

We have computed the Lyapunov exponents using
method for the parameter valuesa51.4 andb50.3. After
10 000 iterations, the Lyapunov exponents were found to

l850.4181, m8521.6221.

The results are in agreement with the values obtained
other methods.

The partial decoupling of the equations for the angles
the exponents, seen in the continuous-time case, is obse
in the discrete case, too. Equations for the full set ofm(m
21)/2 u j

(n11)’s @ j 51,2, . . . ,m(m21)/2# are given by Eq.
~3.12!. The firstm21 u (n11)’s are found from the following
m21 equations:

~Q̃n118 DFQn8! i150,i 52,3, . . . ,m. ~3.33!

That is,

(
k, j 51

n

~Qn118 !kiDFk j~Qn8! j 150, i 52,3, . . . ,m.

~3.34!
s-

b-

r

e

y

d
ed

Only the first (m21) u (n)’s feature in the above set of equa
tions. On solving thesem21 equations, we get the firstm
21 u (n11)’s in terms of the first m21 u (n)’s, viz.,
u1

(n) ,u2
(n) , . . . ,um21

(n) .
Similarly, the next (m22) u (n11)’s are found by solving

the following set of equations:

~Q̃n118 DFQn8! i250, i 53,4, . . . ,m. ~3.35!

Only the first (2m23) u (n)’s feature in the above set o
equations. Here again, all theu (n11)’s, except for the first
(2m23)u (n11)’s, get eliminated so that the resulting equ
tions depend only on the first (m21) and the next (m
22), i.e., the first (2m23) u (n)’s andu (n11)’s. On solving
these equations forum

(n11) ,um11
(n11) , . . . ,u2m23

(n11) , we observe
that the above set of (m22) u (n11)’s depends only on the
first (2m23) u (n)’s. Similarly, u2m22

(n11) ,u2m21
(n11) , . . . ,u3m26

(n11)

depend only on the first (3m26) u (n)’s and so on.
um(m21)/222

(n11) and um(m21)/221
(n11) depends only on the firs

@m(m21)/2#21 u (n)’s. Finally, um(m21)/2
(n11) is seen to de-

pend on allm(m21)/2 u (n)’s.
The equations forl i

(n11)’s are given by

l i
(n11)5l i

n1 lnu~Q̃n118 DFQn8! i i u, i 51, . . . ,m,
~3.36!

and the Lyapunov exponents are given by

l i85 lim
n→`

l i
(n)

n
, i 51,2, . . . ,m. ~3.37!

Since

~Q̃n118 DFQn8! i i 5 (
k, j 51

n

~Qn118 !kiDFk j~Qn8! j i , ~3.38!

l1
(n11) depends on the first columns ofQn andQn11 which,

in turn, depend only on the first (m21) u (n)’s andu (n11)’s
respectively. Since the first (m21) u (n11)’s depend only on
the first (m21) u (n)’s, l1

(n11) depends only on the firs
(m21) u (n)’s. Similarly, l2

(n11) depends only on the firs
(2m23) u (n)’s, l3

(n11) on the first 3m26 u (n)’s and so on.
Finally, lm21

(n11) and lm
(n11) depend on all them(m

21)/2 u (n)’s. Therefore, similar to the continuous case,
solve for the firstm Lyapunov exponents, one has to sol
for only m(2n2m21)/2 equations. The complete proof o
the above statements is similar to the continuous-time c
~see Appendix B!.

To illustrate the application of this method to them53
case, we consider the following map:

xn11512axn
21yn ,

yn115bxn ,

zn115zn ,

where the parameter values are same as in them52 case. As
expected, the values of the three Lyapunov exponents a

l1850.4181, l28521.6221, l3850.
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For them54 case, we consider the following map:

xn11512axn
21yn ,

yn115bxn ,

zn11512azn
21wn ,

wn115bzn .

For the same parameter values as in the above cases
Lyapunov exponents are found to be the same as those o
Henon map, repeated twice.

IV. CONCLUSIONS

In this paper, we have described in detail a technique
computing Lyapunov exponents of continuous-time dyna
cal systems as well as for discrete maps. This method
several advantages over the existing methods. The min
number of variables is used in the equations and the nee
rescaling and reorthonormalization is eliminated. There
no difficulties in calculating degenerate spectra, and glo
invariances of the Lyapunov spectrum can be preserved@7#.
Furthermore, the final set of equations is reduced to a c
venient form, simplifying generalization to higher orde
Another major advantage of this method is in the evaluat
of partial spectra. Fewer equations/operations are requ
than for the full spectra, unlike some of the other existi
methods. Finally, this method is easily adapted to disc
maps, while retaining all the advantages of the continuo
time case.
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APPENDIX A

In this appendix, we shall give direct expressions for
elements of a general SO(n), n>3 matrix.

To define a general SO(n) matrix, we first need to define
some auxiliary@n2(k21)#3@n2(k21)# matrices denoted
by Rk (k51,2, . . . ,n21). The matrices Rk’s, k
51,2, . . . ,n22, are described below. Elements of the fi
row are given by

R11
k 5 )

r 5m(n,k)

p(n,k)

cosu r , ~A1!

R12
k 5 sinum(n,k) , ~A2!

where

m~n,k!5~k21!~2n2k!/2, p~n,k!5k~2n2k21!/2.
~A3!

For j 53, . . . ,n2(k21),
the
the

r
i-
as
al

for
re
al

n-
.
n
ed

te
s-

h
-

e

t

R1 j
k 5S )

r 50

j 22

cosum(n,k)1r D sinum(n,k)1 j 22 . ~A4!

Elements of the second row are given by

R2 j
k 5

]

]um(n,k)
~R1 j

k !, j 51,2, . . . ,n2~k21!. ~A5!

Elements of the remaining rows are given as follows. Foi
53, . . . ,n2(k21) and j 51,2, . . . ,n2(k21),

Ri j
k 5

]

]um(n,k)1 i 22
~Ri j !, ~A6!

whereR i j
k is the coefficient of) r 50

i 23 cosum(n,k)1r in R1 j
k .

Finally, the 232 Rn21 matrix is given by

R12
n2152R21

n215 sinup(n,k) , ~A7!

R11
n215R22

n215 cosup(n,k) . ~A8!

Now we are in a position to give direct expressions for t
elements of then3n matrix QP SO(n). The elementQ1,n
is given by

Q1n5S )
k51

n22

(
j k52

n2(k21) D S )
m50

n22

Rj m21,j m11

m11 D , ~A9!

where j n2152 and j 052. Here we have used the notatio
()k51

n22( j k52
n2(k21))5( j 152

n ( j 252
n21

•••( j n2252
3 ~the product

symbol in the preceding expression is used only for no
tional convenience!. The other elements in the first row ar
given by

Q1,n215
]

]up(n,n21)
~Q1,n!, ~A10!

Q1,l5
]

]up(n,l )
~Q1,l !, l 51,2, . . . ,n22, ~A11!

whereQ1,l is the coefficient of)m5 l 11
n21 cosup(n,m) in Q1,n .

Elements of the second row ofQ are obtained from the
expressions

Q2,l5
]

]u1
~Q1,n!, l 51,2, . . .n. ~A12!

Elements of the remaining rows can be written as

Qi ,l5
]

]u i 21
~Qi ,l !, i 53,4, . . . ,n, l 51,2, . . . ,n,

~A13!

whereQi ,l is the coefficient of) r 51
i 22 cosur in Q1,l .

We now apply the above formulas to obtain expressio
for a general SO~3! matrix. Settingn53 in the above for-
mulas, we first get@cf. Eq. ~A3!#

p~3,2!53, p~3,1!52, m~3,1!51. ~A14!

The last element of the first row is given by@cf. Eq. ~A9!#
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Q1,35 (
j 152

3

R1 j 1

1 Rj 121,2
2

5R12
1 R12

2 1R13
1 R22

2 , ~A15!

where

R12
1 5 sinu1 , ~A16!

R13
1 5 cosu1 sinu2 , ~A17!

R12
2 5 sinu3 , ~A18!

R22
2 5 cosu3 ~A19!

Therefore, the elements of the general SO~3! matrix are

Q1,35 sinu1 sinu31 cosu1 sinu2 cosu3

Q1,25
]

]u3
Q1,35 sinu1 cosu32 cosu1 sinu2 sinu3 ,

Q1,15
]

]u2
~Q1,1!5

]

]u2
~cosu1 sinu2!5 cosu1 cosu2 ,

Q2,15
]

]u1
Q1,152 sinu1 cosu2 ,

Q2,25
]

]u1
Q1,25 cosu1 cosu31 sinu1 sinu2 sinu3 ,

~A20!

Q2,35
]

]u1
Q1,35 cosu1 sinu32 sinu1 sinu2 cosu3 ,

Q3,15
]

]u2
~Q3,1!5

]

]u2
~cosu2!52 sinu2 ,

Q3,25
]

]u2
~Q3,2!5

]

]u2
~2 sinu2 sinu3!52 cosu2 sinu3 ,

Q3,35
]

]u2
~Q3,3!5

]

]u2
~sinu2 cosu3!5 cosu2 cosu3 .

These expressions agree with the standard expression
SO~3! matrix elements as expected.

APPENDIX B

Theorem.To solve for the firstm Lyapunov exponents
only m(2n2m11)/2 equations need to be solved.

Proof. We will prove the theorem in stages using a ser
of lemmas. Consider the orthogonal matrixQ represented by
@cf. Eq. ~2.7!#

Q5Q(12)Q(13)
•••Q(1n)Q(23)

•••Q(n21,n), ~B1!

and parametrized byn(n21)/2 angle variables denoted b
u i @ i 51,2, . . . ,n(n21)/2#.
for

s

Lemma 1.The elements of thel th column of the orthogo-
nal matrixQ represented as in Eq.~B1! depend only on the
first l (2n2 l 21)/2 u i ’s for l ,n and alln(n21)/2 u i ’s for
l 5n.

Proof. Let

Ti5Q( i ,i 11)Q( i ,i 12)
•••Q( i ,n). ~B2!

Then,

T15Q(1,2)Q(1,3)
•••Q(1,n). ~B3!

Since the elements of the matricesQ(1,2),Q(1,3), . . . ,Q(1,n)

depend only on the first (n21) u i ’s, the elements of the
matrix T1 also depend only on theseu i ’s, viz.,
u1 ,u2 , . . . ,un21. And

T25Q(2,3)Q(2,4)
•••Q(2,n). ~B4!

This matrix is of the form

F 1

1 0•••0

0

A H2~un ,un11 , . . . ,u2n23!

0

G . ~B5!

HereH2 is an (n21)3(n21) matrix, whose elements de
pend only on the next (n22) u i ’s, viz.,
un ,un11 , . . . ,u2n23 since the constituent matrice
Q(2,3),Q(2,4), . . . ,Q(2,n) depend only on these angles. No
that the first column is just a unit vector.

Continuing the above process,

Tn225Q(n22,n21)Q(n22,n) ~B6!

and

Tn215Q(n21,n). ~B7!

The matrixTn21 is of the form

3
1 0 ••• 0 0 0

0 1 ••• 0 0 0

0 0 ••• 0 0 0

A A A A A A

0 0 ••• 1 0 0

0 0 ••• 0

Hn21

0 0 ••• 0

4 . ~B8!

HereHn21 is a 232 matrix, whose elements depend on on
one u, viz., un(n21)/2 sinceQ(n21,n) depends solely on this
angle.

Now consider the matrixQ given by

Q5T1T2•••Tn21 . ~B9!

Since the first columns ofT2 throughTn21 are unit vectors,
the elements of the first column ofQ depend only on the firs
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(n21) u i ’s. Since the second columns ofT3 throughTn21
are unit vectors, the elements of the second column oQ
depend only on the first (n21) u i ’s and the next (n
22) u i ’s, i.e., the first (2n23) u i ’s. Continuing the above
analysis, the (n22)th column ofQ depends only on the firs
@n(n21)/2#21 u i ’s, while the penultimate and the last co
umns ofQ depend on all then(n21)/2 u i ’s. This can be
summarized by the statement that the elements of thel th
column of the orthogonal matrixQ represented as in Eq
~B1! depend only on the firstl (2n2 l 21)/2 u i ’s for l ,n
and alln(n21)/2 u i ’s for l 5n. Thus the lemma is proved

Lemma 2.The equations foru̇ i @ i 51,2, . . . ,n(n21)/2#
are derived from the following set ofn(n21)/2 equations
@cf. Eq. ~2.12!#:

~Q̃Q̇! jk5~Q̃DFQ! jk , j .k. ~B10!

The above set of equations yields (n2k) equations for a
given value ofk. These (n2k) equations depend only on th
first k(2n2k21)/2 u̇ i ’s.

Proof. From the discussion following Eq.~2.12!, it is
clear that equations foru̇ i ’s are derived from Eq.~B10!. Fur-
ther, sincej .k in the above set of equations, each giv
value of k yields (n2k) equations since all matrices hav
dimensionsn3n. The statement that these (n2k) equations
depend only on the firstk(2n2k21)/2 u̇ i ’s is also easily
proved as follows. Note thatu̇ i ’s appear only on the left-
hand side of Eq.~B10! and

~Q̃Q̇! jk5(
l 51

n

Q̃jl Q̇lk , j 5k11,k12, . . . ,n. ~B11!

For a given k, u̇ i ’s appear through the termsQ̇lk ( l
51,2, . . . ,n), i.e., through the elements of thekth column
of Q̇. In the preceding lemma, we have proved that thekth
column ofQ depends only on the firstk(2n2k21)/2 u i ’s.
Hence thekth column ofQ̇ depends only on the firstk(2n

2k21)/2 u̇ i ’s. This completes the proof of the lemma.
As a consequence of lemma 2, equations for the firstn

21) u̇ i ’s are given by the (n21) equations

(
k51

n

QkiQ̇k15 (
k, j 51

n

Qji DFjkQk1 , i 52,3, . . . ,n.

~B12!

Only the first (n21) u̇ i ’s feature in the above set of equ
tions.

The next (n22) u̇ i ’s, viz., u̇n , u̇n11, . . . ,u̇2n23, are
given by the following set of (n22) equations:

(
k51

n

QkiQ̇k25 (
k, j 51

n

Qji DFjkQk2 , i 53, . . . ,n.

~B13!

Only the first (n21) and the next (n22) u̇ i ’s, i.e., the first
(2n23) u̇ i ’s feature in the above set of equations.

This process is continued until we get the equation
u̇n(n21)/2, which is given by
r

(
k51

n

QknQ̇k,n215 (
k, j 51

n

QknDFk jQj ,n21 . ~B14!

All the u̇ i ’s feature in the above equation.
Lemma 3,The equations foru̇ i ’s when i is in the range

(k21)(2n2k)/211 to k(2n2k21)/2 (k51,2, . . . ,n
21) depend only on the firstk(2n2k21)/2 u i ’s.

Proof.To make the statement of the lemma more explic
we shall prove that the first (n21) u̇ i ’s, viz.,
u̇1 ,u̇2 , . . . ,u̇n21, depend only on the first (n21) u i ’s. The
next set of (n22) u̇ i ’s, viz., u̇n ,u̇n11 , . . . ,u̇2n23, depend
only on the first (2n23) u i ’s and so on. Finally,
u̇ [n(n21)/2]22 and u̇ [n(n21)/2]21 depend only on the firs

@n(n21)/2#21 u i ’s while u̇ [n(n21)/2] depends on all the
n(n21)/2 u i ’s.

Let

N5n~n21!/2,

P15Q(1,2),

P25P1Q(1,3),

AA

Pn215Pn22Q(1,n),

Pn5Pn21Q(2,3), ~B15!

AA

P2n235P2n24Q(2,n),

AA

PN225PN23Q(n22,n21),

PN215PN22Q(n22,n).

Therefore,Q5PN21Q(n21,n).
For a given value ofk, we have to show thatu̇ i ’s when i

is in the range (k21)(2n2k)/211 to k(2n2k21)/2 de-
pend only on the firstk(2n2k21)/2 u i ’s. For notational
simplicity, we denote the starting point of the range oi
values given above bya@k#, i.e.,

a@k#5~k21!~2n2k!/211. ~B16!

The endpoint is denoted byv@k#, i.e.,

v@k#5k~2n2k21!/2. ~B17!

We now work backwards fromk5n21. For k5n21,
a@k#5v@k#5n(n21)/25N. Thus we have to show thatu̇N
involves allu i ’s. From Eq.~B14!, this is easily seen since th
nth and (n21)th column ofQ appear in the equation. By
lemma 1, these columns involve allu i ’s. Hence the statemen
is proved fork5n21.

Next, we considerk5n22. In this case,a@n22#5N

22 and v@n22#5N21. Thus, there are twou̇ i ’s in this
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range, viz.,u̇a[n22] and u̇a[n22]11. These are given by the
following set of two equations:

(
k51

n

QkiQ̇k,n225 (
k51

n

Qki~DFQ!k,n22 , i 5n21,n.

~B18!

Let A5DFQ. Then the above equations imply

(
k51

n

Qk,n21Q̇k,n225 (
k51

n

Qk,n21Ak,n22 , ~B19!

(
k51

n

Qk,nQ̇k,n225 (
k51

n

Qk,nAk,n22 , ~B20!

where

Qk,n215(
j 51

n

~PN21!k, jQj ,n21
(n21,n)

5~PN21!k,n21Qn21,n21
(n21,n) 1~PN21!k,nQn,n21

(n21,n)

5~PN21!k,n21 cosuN2~PN21!k,n sinuN . ~B21!

and

Qk,n5(
j 51

n

~PN21!k, jQj ,n
(n21,n)5~PN21!k,n21Qn21,n

(n21,n)

1~PN21!k,nQn,n
(n21,n)5~PN21!k,n21 sinuN

1~PN21!k,n cosuN . ~B22!

Multiplying Eq. ~B19! by cosuN and Eq.~B20! by sinuN
and adding the two gives

~PN21!k,n21Q̇k,n225~PN21!k,n21Ak,n22 . ~B23!

From Eq.~B15!, we see that

~PN21!k,n215(
j 51

n

~PN22!k, jQj ,n21
(n22,n)

5~PN22!k,n21 , ~B24!

sinceQn21,n21
(n22,n) 51. Therefore, Eq.~B23! becomes

~PN22!k,n21Q̇k,n225~PN22!k,n21Ak,n22 . ~B25!

Similarly, multiplying Eq. ~B19! by sinuN and subtracting
from Eq. ~B20! multiplied by cosuN gives

~PN21!k,nQ̇k,n225~PN21!k,nAk,n22 . ~B26!

Note thatN225a@n22# andN215a@n22#11. There-
fore, to derive the expressions foru̇a[n22] and u̇a[n22]11, it
is sufficient to solve the following two equations@cf. Eq.
~B25! and Eq.~B26!#:

(
k51

n

~Pa[n22]!k,n21Q̇k,n225 (
k51

n

~Pa[n22]!k,n21Ak,n22 ,

~B27!
(
k51

n

~Pa[n22]11!k,nQ̇k,n225 (
k51

n

~Pa[n22]11!k,nAk,n22 .

We see thatuN does not feature in the above expressio
which depend only on the firstv@n22# u i ’s and u̇ i ’s.

For k5n23, a@n23#5N25 and v@n23#5N23.
Thus there are threeu̇ i ’s in this range, viz., u̇a[n23] ,
u̇a[n23]11, and u̇a[n23]12. These are given by solving th
following set of three equations:

(
k51

n

QkiQ̇k,n235 (
k, j 51

n

Qji DF jkQk,n23 , i 5n22,n21,n.

~B28!

Writing this out explicitly, we get

(
k51

n

Qk,n22Q̇k,n235 (
k51

n

Qk,n22Ak,n23 , ~B29!

(
k51

n

Qk,n21Q̇k,n235 (
k51

n

Qk,n21Ak,n23 , ~B30!

(
k51

n

Qk,nQ̇k,n235 (
k51

n

Qk,nAk,n23 . ~B31!

Only the firstv@n23#5(N23) u̇ i ’s feature in the above
set of equations. We shall now show that the final expr
sions depend only on the first (N23) u i ’s.

Similar to thek5n22 case,uN can be eliminated from
Eq. ~B30! and Eq.~B31! to give

(
k51

n

~PN22!k,n21Q̇k,n235 (
k51

n

~PN22!k,n21Ak,n23 ,

~B32!

(
k51

n

~PN21!k,nQ̇k,n235 (
k51

n

~PN21!k,nAk,n23 . ~B33!

Here (PN22)k,n21 and (PN21)k,n can be rewritten as

~PN22!k,n215(
j 51

n

~PN23!k, jQj ,n21
(n22,n21)

5~PN23!k,n22 sinuN22

1~PN23!k,n21 cosuN22 ~B34!

and

~PN21!k,n5(
j 51

n

~PN22!k, jQj ,n
(n22,n)

5~PN22!k,n22Qn22,n
(n22,n)1~PN22!k,nQn,n

(n22,n)

5~PN22!k,n22 sinuN211~PN22!k,n cosuN21 .

~B35!

The Qk,n22 that appears in Eq.~B29! can be written as
~making use of the fact thatQn22,n22

(n21,n) 51)
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Qk,n225(
j 51

n

~PN21!k, jQj ,n22
(n21,n)

5~PN21!k,n22

5~PN22!k,n22Qn22,n22
(n22,n) 1~PN22!k,nQn,n22

(n22,n)

5~PN22!k,n22 cosuN212~PN22!k,n sinuN21 .

~B36!

Therefore, sinuN213 Eq. ~B33! 1 cosuN213 Eq. ~B29!
gives

(
k51

n

~PN22!k,n22Q̇k,n235 (
k51

n

~PN22!k,n22Ak,n23 ,

~B37!

and cosuN213 Eq. ~B33! 2 sinuN213 Eq. ~B29! gives

(
k51

n

~PN22!k,nQ̇k,n235 (
k51

n

~PN22!k,nAk,n23 . ~B38!

Here

~PN22!k,n225(
j 51

n

~PN23!k, jQj ,n22
(n22,n21)

5~PN23!k,n22 cosuN22

2~PN23!k,n21 sinuN22 . ~B39!

Further, cosuN223 Eq. ~B37! 1sinuN223 Eq. ~B32!
gives

(
k51

n

~PN23!k,n22Q̇k,n235 (
k51

n

~PN23!k,n22Ak,n23

~B40!

and2 sinuN223 Eq. ~B37! 1 cosuN223 Eq. ~B32! gives

(
k51

n

~PN23!k,n21Q̇k,n235 (
k51

n

~PN23!k,n21Ak,n23 .

~B41!

Therefore, the set of three equations to solve foru̇a[n23] ,
u̇a[n23]11, and u̇a[n23]12 is given by

(
k51

n

~PN23!k,n22Q̇k,n235 (
k51

n

~PN23!k,n22Ak,n23 ,

~B42!

(
k51

n

~PN23!k,n21Q̇k,n235 (
k51

n

~PN23!k,n21Ak,n23 ,

~B43!

(
k51

n

~PN22!k,nQ̇k,n235 (
k51

n

~PN22!k,nAk,n23 . ~B44!

But using the fact thatQn22,n22
(n23,n) 5Qn22,n22

(n23,n21)51, we get
~PN23!k,n225(
j 51

n

~PN24!k, jQj ,n22
(n23,n)

5~PN24!k,n22

5(
j 51

n

~PN25!k, jQj ,n22
(n23,n21)

5~PN25!k,n22 . ~B45!

Similarly,

~PN23!k,n215(
j 51

n

~PN24!k, jQj ,n21
(n23,n)

5~PN24!k,n21 ~B46!

and

~PN22!k,n5(
j 51

n

~PN23!k, jQj ,n
(n22,n21)

5~PN23!k,n . ~B47!

Making use of the above simplifications and the identit

N255a@n23#, N245a@n23#11,

N235a@n23#12, ~B48!

the set of equations to be solved finally reduces to

(
k51

n

~Pa[n23]!k,n22Q̇k,n235 (
k51

n

~Pa[n23]!k,n22Ak,n23 ,

~B49!

(
k51

n

~Pa[n23]11!k,n21Q̇k,n23

5 (
k51

n

~Pa[n23]11!k,n21Ak,n23 , ~B50!

(
k51

n

~Pa[n23]12!k,nQ̇k,n235 (
k51

n

~Pa[n23]12!k,nAk,n23 .

~B51!

The above set of equations depends only on the firstv@n

23#5(N23) u i ’s and u̇ i ’s as we have eliminateduN ,
uN21, anduN22 from these equations.

Similarly, for k5n24, the four equations required t
solve foru̇a[n24] , u̇a[n24]11 , u̇a[n24]12, andu̇a[n24]13 re-
duce to

(
k51

n

~Pa[n24]!k,n23Q̇k,n245 (
k51

n

~Pa[n24]!k,n23Ak,n24 ,

~B52!
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(
k51

n

~Pa[n24]11!k,n22Q̇k,n24

5 (
k51

n

~Pa[n24]11!k,n22Ak,n24 , ~B53!

(
k51

n

~Pa[n24]12!k,n21Q̇k,n24

5 (
k51

n

~Pa[n24]12!k,n21Ak,n24 , ~B54!

(
k51

n

~Pa[n24]13!k,nQ̇k,n245 (
k51

n

~Pa[n24]13!k,nAk,n24 .

~B55!

The above equations depend only on the firstv@n24#

5(N26) u i ’s and u̇ i ’s.
Continuing in the same way untilk51, we get the final

set of n21 equations to solve foru̇1 , u̇2, . . . , u̇n21 given
by

(
k51

n

~P1!k,2Q̇k,15 (
k51

n

~P1!k,2Ak,1 , ~B56!

(
k51

n

~P2!k,3Q̇k,15 (
k51

n

~P2!k,3Ak,1 , ~B57!

AA ~B58!

AA ~B59!

(
k51

n

~Pn21!k,nQ̇k,15 (
k51

n

~Pn21!k,nAk,1 . ~B60!

The above equations depend only on the firstv@1#5n

21 u i ’s, and u̇ i ’s.
Therefore, we have proved that the first (n21) u̇ i ’s de-

pend only on the first (n21) u i ’s, the nextn22 u̇ i ’s de-
pend only on the first 2n23 u i ’s, and so on. Finally,u̇N22

and u̇N21 depend only on the first (N21) u i ’s, and u̇N de-
pends on all then(n21)/2 u i ’s. To summarize,u̇a[k] ,
u̇a[k] 11 , . . . , u̇v[k] depend only on the firstv@k# u i ’s. This
completes the proof of the lemma.
ys

n

We now return to the proof of the main theorem. T
equation forl̇1 is given by

l̇15~Q̃DFQ!11 ~B61!

5(
j 51

n

(
k51

n

Qj 1DFjkQk1 . ~B62!

The l̇1 is seen to depend only on the first columnQm1 (m
51,2, . . . ,n) of Q. From lemma 1, the first column depend
only on the first (n21) u i ’s, viz., u1 ,u2 , . . . ,un21. These
u i ’s are found by using the differential equations for t
correspondingu̇ i ’s. But, we have already proved in lemma
that the first (n21) u̇ i ’s depend only on the first (n

21) u i ’s. Hence,l̇1 also depends on the same.
The equation forl̇2 is given by

l̇25~Q̃DFQ!22 ~B63!

5(
j 51

n

(
k51

n

Qj 2DFjkQk2 . ~B64!

The l̇2 is seen to depend only on the second colu
Qm2 (m51,2, . . . ,n) of Q. From lemma 1, the second co
umn depends only on the first (2n23) u i ’s, viz.,
un ,un11 , . . . ,u2n23. The differential equations for the cor
respondingu̇ i ’s, used for finding theseu i ’s, also depend only
on the first (2n23) u i ’s ~cf. lemma 3!. Hence,l̇2 also de-
pends on the same. Similarly,l̇3 depends only on the firs
(3n26) u i ’s and so on. Finally, we see thatl̇n21 and l̇n
depend on alln(n21)/2 u i ’s as they depend on the last tw
columns ofQ, which, in turn, depend on allu i ’s.

Therefore, to solve for the first Lyapunov exponent, o
has to solve onlyn equations, i.e., (n21) equations for the
first (n21) u̇ i ’s and the equation forl̇1. To solve for the
first two Lyapunov exponents, one has to solve (2n21)
equations, i.e., (2n23) equations for the first (2n23) u̇ i ’s
and the two equations forl̇1 and l̇2. Therefore, in general
to solve for the firstm Lyapunov exponents, one has to sol
m(2n2m11)/2 equations, which is always less thann(n
11)/2 for m,n. This completes the proof of the theorem
os
.
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