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In this paper, we describe in detail a method of computing Lyapunov exponents for a continuous-time
dynamical system and extend the method to discrete maps. Using this method, a partial Lyapunov spectrum
can be computed using fewer equations as compared to the computation of the full spectrum, there is no
difficulty in evaluating degenerate Lyapunov spectra, the equations are straightforward to generalize to higher
dimensions, and the minimal set of dynamical variables is used. Explicit proofs and other details not given in
previous work are included herg51063-651X99)07212-9
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[. INTRODUCTION lytically obviates the need for rescaling and reorthogonaliza-
tion. Our method did away with the other shortcomings
Chaos plays an important role in a large class of dynamilisted above: A partial Lyapunov spectrum could be com-
cal systems. The question of detecting and quantifying chaoguted using fewer equations as compared to the computation
has therefore become an important one. The spectrum aff the full spectrum, there was no difficulty in evaluating
Lyapunov exponents has proven to be the most useful dydegenerate Lyapunov spectra, the equations were straightfor-
namical diagnostic for chaotic systeifiid and several meth- ward to generalize to higher dimensions, and the method
ods exist for computing these exponefits-5]. However, no  used the minimal set of dynamical variables. Since our
single method appears to be optimal. For example, QR anthethod was based on exact differential equations for the
singular value decompositiof8VD) methods[2,3] require  Lyapunov exponents, global invariances of the Lyapunov
frequent renormalizatiorito combat exponential growth of spectrum were preserved in principle.
the separation vector between the fiducial and nearby trajec- In the present paper, we describe in detail the above
tories and reorthogonalizatiofto overcome the exponential method for continuous-time dynamical systems. In the ear-
collapse of initially orthogonal separation vectors onto thelier paper, some of the advantages of our method were
direction of maximal growth The existing continuous ver- merely stated without any proofs. Here we provide analytical
sions of the QR and SVD methods also suffer from the adproofs of these statements; these are given in the Appendixes
ditional disadvantage of being unable to compute the partiasince they are quite involved. In the earlier paper we had
Lyapunov spectrum using a fewer number of equationstonsidered only two- and three-dimensional examples. In
operations than required for the computation of the full specthis paper, we extend this up to six dimensions. More impor-
trum [3]. Further, the continuous SVD method breaks downtantly, we generalize our method to discrete maps while re-
when computing degenerate Lyapunov spef@taThe sym-  taining all the advantages listed above.
plectic method4] is applicable only to Hamiltonian systems
(and a few generalizations therg@ind has proven difficult [l. CONTINUOUS-TIME DYNAMICAL SYSTEMS
to extend to systems of moderate size, though this is possible
in principle [6]. It also does not permit easy evaluation of
partial Lyapunov spectra.
In an earlier papef7], we had briefly outlined a method
for computing Lyapunov exponents for continuous-time dy-
namical systems. We proposed a general method which ana- i F@u, 2.9

We briefly recall the method presented in our earlier pa-
per[7]. Consider am-dimensional continuous-time dynami-
cal system,

wherez=(z;,2,, .. .,z,) andF is ann-dimensional vector
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whereDF denotes therx n Jacobian matrix. initial conditions. We choose the identity matrix as the initial
Integrating the linearized equations along the fiducial tra-orthogonal matrix. That is, we start with a matrix from the

jectory yields the tangent mal (zy(t),t) which takes the SO(n) component of the group of orthogonal matrices. Since

initial variables Z™ into the time-evolved variableg(t)  we are dealing with continuous-time dynamical systems for

=M(t)Z" [the dependence d¥l on the fiducial trajectory the present, due to continuity, we remain in the same com-

Zo(t) is understoofl Let A be annXxn matrix given byA ponent for all time. Hence, we are justified in choos@do

=lim,_..(MM)¥2, whereM denotes the matrix transpose P& @ SO() matrix. For large values ai, directly using Eq.

of M. The Lyapunov exponents then equal the logarithm of(2.7) to obtain the representation ¢f can be cumbersome:

the eigenvalues of [1]. In Appendix A, we give a prescription for calculating the
It is clear thatM is of central importance in the evaluation €léments of a S®() matrix in a more direct fashion.

of Lyapunov exponents. Its evolution equation can be easily Since the upper-triangular matr has positive diagonal

derived: entries, it can be represented as follows:
dMm e)‘l o -+ N T
H—DFM. (2.3 0 €2 1y oo Iy
R=1 . . .| (2.9
As is well known[8], the matrixM can be written as the | : | : |
product M =QR of an orthogonalnxn matrix Q and an 0 0 0 0 e
upper-triangulamxXn matrix R with positive diagonal en-
tries. Substituting this into Eq2.3), we obtain The quantitiesy; will be shown to be intimately related to
the Lyapunov exponents. Our final equations will be in terms
QR+ QR=DFQR, (2.9 of the \; which already appear in the exponent, thus remov-

ing the need for rescaling. The quantities represent the
where the overdot denotes a time derivative. Multiplying thesupradiagonal terms iR.

above equation bf) from the left andR™* from the right, Using the above representation Rfwe obtain
we get . , )

~ - . ~ )\1 M1 Mn

QQ+RR '=QDFQ. (2.5 0 i ' ,

Y Ao Tag o T
~ _ ) RR™ "= . (2.9

Note thatQQ is a skew(ant)symmetric matrix for any or- : : : : :
:h_ogonal matrixQ andRR ™ is still an upper-triangular ma- 0 0 0 0 \,
rix.

In our method, we employ an easy to obtain explicit rep-The quantities | are of no concer since they are not present
resentation of the orthogonal mati@from group represen- i, the final equations.

of variables is used to characterize the syste(n—1)/2in  paring diagonal terms on both sides, we obtain
Q and furthem variables inR, for a total ofn(n+1)/2. The

matrix Q is represented as a productmfn—1)/2 orthogo- N=Si, i=1,2,...n, (2.10
nal matrices, each of which corresponds to a simple rotation

in the (i-jth plane (<j) [9]. (!_D)en.oting the matrix corre- \\hereS=QDFQ. This is easily seen to be true sinQe&) is
sponding to this rotation b@"", its matrix elements are g antisymmetric matrix with diagonal entries zero and

given by RR~! has\; as the diagonal entries. The Lyapunov expo-
Q=1 if k=I%i,] nents are given bj3]
= if k=l=i i N
cos¢ if k=I1=i or j ”mTI' (2.1
=sing if k=i, =] e
=—sing if k=j, I=i In general, in the limit—oco the Lyapunov exponents con-
_ stitute a monotically decreasing sequence. Thus, the
=0 otherwise. (2.6)  Lyapunov exponents can be obtained by solving the differ-

ential equations given in E@2.10 for long times. However,

since the right-hand side depends on the anglesve also

require differential equations governing the evolution of
— 012~ 13). .. A A23). . . ~(h—1n) these angles.

Q=QR QR Q ' @7 Differential equations for the angles can be obtained by
HenceQ is parametrized by(n—1)/2 angles which we de- comparing the subdiagonal elements in Eg.5. Since
note byd, (i=1,...n(n—1)/2). These angles will be col- RR™! has zero subdiagonal entries, this gives
lectively denoted hyd.

Here Q is represented by a special orthogonal matrix (QQ)y=5,,(0Q)3;=Ss1, .. . 1(éo)n,n—1zsn,n—1-
(with determinant equal to+ 1) because of the choice of (2.

Here ¢ denotes an angle variable. Thus, tive n matrix Q
is represented by

12
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FIG. 1. This figure shows the evolution &f /t as a function of . ey
time t for the driven van der Pol oscillator. The parameter values -0-1 | RR——— 1
used ared=—5, b=5, andw=2.466. ‘
Note that the above equations are decoupled from the equa_y s ! ! ! ! .

tions for\;. This avoids potential problems with degenerate 015 0.1 -0.05 0 0.05 0.1 0.15
Lyapunov spectra. The above set of differential equations for FIG. 3. This figure exhibits the polar plot af, /t as a function

the e_mgles can be easily set in the following more Standarﬂf 6(t) for the driven van der Pol oscillator. The parameter values
form: used aral=—5, b=5, andw=2.466.

0i=6i(0), 1=12,...p(n=1)/2. 213 Lyapunov exponents, one has to solwg2n—m-+1)/2

Equations(2.10 and(2.13 form a system oh(n+1)/2 or-  equations which is always less thafn+1)/2 (the total
dinary differential equations that can be solved to obtain théumber of equationsfor m<n. This is in contrast to the
Lyapunov exponents. Since the differential equations are fogituation for the conventional continuous QR or SVD meth-
the angles and not directly for the matrix elementsQf ods, where it is computationally costlier to evaluate a partial
numerical errors can never lead to loss of orthogonalitySPectrum once a threshold is cros$&di The proof of the
Consequently, the need for reorthogonalization is obviated i@Pove important statement is quite involved: It can be found
our method. in Appendix B.

Our system of differential equations has another attractive Another interesting feature of this method is the follow-
feature. The equation fox,; depends only on the firsm( NG
—1) 6;’s. Therefore, if one is interested in only the largest

Lyapunov exponent, one needs to solve amigquationgas 8 - - .
opposed ton(n+1)/2 for the full spectruth The equation - )
for N, depends only on the first (2-3) 6,'s. Therefore, to ,
obtain the first two Lyapunov exponents, one needs to solve e
only (2n—1) equations. In general, to solve for the first
4 7 -
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FIG. 2. This figure shows the evolution b/t as a function of FIG. 4. This figure exhibits the polar plot af/t as a function

time t for the driven van der Pol oscillator. The parameter valuesof 6(t) for the driven van der Pol oscillator. The parameter values
used ared= -5, b:5, andw=2.466. used ared= -5, b=5, andw=2.466.
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M:

éé AI:

_ (QDFQ); (2.14
i=1 i=1
= > > Q;i DFji Qi (2.19
1=1]=1k=1
=> > Dij(E jSQki)- (2.19
]=1 k=1 =1

SinceQQ=1 (Q being an orthogonal mathix={_; Qj; Qy;
=0, 1,Jj=1,2,...n. Therefore, we get
. +)\n: DF11+ DF22+ .

PR PE -+ DFyp.

(2.17
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21=12,,

(2.18

zy=—d(1—23)z,— z;+ b coswt.

We have already considered this system in our earlier paper
[7]. Here we present more detailed results for the system. For
the parameter valued=—5, b=5, andw=2.466, the re-
sults for the Lyapunov exponents are shown in Figs. 1 and 2.
The results are in agreement with values obtained by the
existing methods. In Fig. 3, we plot;/t as a function of
0(t) in a polar plot. The figure shows that we obtain a circle
asymptotically. This suggests that our variables are akin to
the “action-angle” variables encountered in classical me-
chanics. At present, methods for exploiting this feature to
speed up the convergence rate of the Lyapunov exponents
are being investigated. In Fig. 4, we exhibit the polar plot of
N\, /t versus@. Here, the circle is approached even faster
asymptotically.

For then=4 case, we have to generalize the equations

This relation can be used to speed up the numerical integragiven in our earlier pap€ff7]. The dominant Lyapunov ex-

tion of the differential equation fox,, .

ponent for then=4 case is given by integrating the follow-

To illustrate the application of the method to a systeming equation numericallyalong with equations fop;, 65,
with two degrees of freedom, we consider the driven van deand 6; which we have not included belgwor long times

Pol oscillator:

and dividing by time:

A 1= cog6; coS 6, coS Ozdfy 1+ SNt O, COS 6, COF O3d foo+ SINPH, COF Aad fagt SiNPOzd T4,

1
— 5526, cog 6, coSO5(df,+dfy) —

1 1
cos91 sSin 26, cog03(df g+ dfg) — = cos91 €0, Sin 205(df4+df,q)

1 1 1
+ Esin 6, Sin 26, coS A5(d f 5+ dfg,) + > Sin#, cosh, Sin 203(d o+ dfyy) + Esin 0,sin20;5(dfs,+dfsg). (2.19
|
We apply this method to two systems. We start with an z,=12,,
example of a system with the Hamiltonian
z,=—d(1—2z%)z,—z,+b coswt
2112 2,,2 4, 4 2 1)427 41 )
+ X X"+
He Pxt Py N y . y (2.20 - (2.295
2 2 32 Z3=12,,
The Hamilton equations of motion are zj=—d(1—23)z,—z3+b coswt,
9 where the parameter values are the same as in#1 case.
X= ,;_H Py, (2.2)  The values of the Lyapunov exponents of the above set of
Px equations, obtained by our method, are found to be the same
P as those of the van der Pol oscillator, repeated twice, as
p=— —H=—(xy>+x%/8), (2.2  expected.
IX Our method has been further extended to the nasé. It
has been applied to a generalization of the example given in
. J Eqg. (2.20 to three degrees of freedom. Results obtained are
y= apy H=py, (223 as expected.
_ lll. LYAPUNOV EXPONENTS FOR DISCRETE MAPS
=— —H=—(x?y+Vy%8). 2.2 : . :
Py ay (Y +y~/8) 2.29 In the preceding section, we considered our method as

applied to continuous-time dynamical systems. In this sec-

Two of the Lyapunov exponents tend to zero and the othetion, we generalize our method of computing Lyapunov ex-
two are the negative of each other, as expected. The secopdnents to discrete maps.

example is given by

Let us consider the following nonlinear map:
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z(n+1)=F(z(n)), (3.
whereF: Rm—R™ is a differentiable vector function ar
is anm vector. Let the matrix {F;/dz;) of partial deriva-
tives of the components; at z be denoted bypF(z). Then
the corresponding matrix of partial derivatives for thtn
iterateF" of F is given by

a(F"); no1
= _DF(F"1). - - DF(F(2))DF(2).

7z, (3.2

Let
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following four combinations have to be taken into account
while developing the algorithm for computing the angles and
subsequently the Lyapunov exponeriisQ,e SO(m) and
Qn+1€ SOM), (i) Que SO(M) and Q,,;e O'(m),
(i) Que O'(M) and Q1€ SOM), (iv) Que O'(m)
andQ,, ;e O'(m).

To take into account the above four cases, we define

Q=Q/P;, j=n,n+1, (3.9

where Q/ e SO(m) is parametrized using) (j=n,n

+1; i=12,...m(m—-1)/2) [cf. Eq. (2.7)]. The mXm
matricesP;(j=n,n+ 1) are diagonal matrices with diagonal
elements Pj)=1 (or —1), k=1,2,...m. Thus, if Q;

e SO(m), thenP; has zero or an even number-efl’s and

if Qje O’(m), thenP; has an odd number of 1's.

For computation of the angles, we now show that we can

still parametrizeQ,,’'s as SO() matrices even in the discrete
case. From Eq(3.8), we have[using Eq.(3.9) for Q,]

A,=DF(F""12)...DF(F(z))DF(z), (3.3

which implies
A,=DF(z(n—1))- - -DF(z(1))DF(z(0)). (3.9
Then
An+1=DF(z(n)A,. (3.5 _
(Qn+1DFQn)ik

Similar to the continuous casé,, can be decomposed
into a product of an orthogonal matrix and an upper-
triangular matrix with positive diagonal elements. That is,

Qn+1Rn+1= DF(Z(n))Qan )

where Q,,Q,::€0(m) and R, and R,,.; are the upper-
triangular matrices with positive diagonal elements. Let

I
M=

(Qn+ 1)1 (DFQp)

,
1
u

(3.6)

Il
H\ZE

1 (Qr,H—an-%—l)rl DFrs(quPn)sk

(R i=1,... m} be the set of diagonal elements f. m
Then = 2 (Qhu)ru(Prs)uDFre(Qn)au(Prluc
~ InRIM
lim :)\i, ) . ’ '
ne = 2 (Qhu2)n(Pas)uDFs(Qus Poia
where{\{ ,i=1,... m} are the Lyapunov exponents.

From Eq.(3.6), we have [since(P,);;=0 V i#]]

Rn+1Ry = Q4+ 1DFQy, (3.7)

where the left-hand side is an upper-triangular matrix with
RMYRM (1=1,2,...m) as the diagonal elements. The
dependence oDF on z(n) is understood. Sinc®) (j
=n,n+1;i=1,2,3...,m) are positive, they can be repre-
sented by exp(j=nn+1;i=1,2,3... m). Therefore,
the diagonal elements of the matrmg,HR;l are given by
expA" VA" i=123... m

From Eq.(3.7), the equations fol("**)'s are given by
the following set of equationésince RHHR;l is an upper
triangular matrix:

= (Pn+1)II(Pn)kkr§1 (br’wl)rl DFrs(qu)sk

= (P D11 (Po)i(Qp 4 1DFQ) k- (3.10

Thus,

(Qn+1DFQp)i=0, (3.1

which implies

(Qh+1DFQ =0, (3.12

(Qn+1DFQp)y=0, 1>k, (3.8

wherel=2,3,... mandk=1,2,3...,—1. To solve these Wwherel>k, 1=23,...m, andk=1,2,...]—1. There-
equations fos"* Vs, we have to first parametrize tigg,’s.  fore, for solving for6"**'s [j=1,2,... m(m—1)/2], itis
For continuous-time dynamical systems, because of continwsufficient to solve Eq(3.12) instead of Eq(3.8), irrespective

ity arguments we were able to parametrQg as a SOG)
matrix. On the other hand, in the discrete case Qs may

of whether theQ;’s belong to SOfn) or O'(m).
But the Q;’s do matter while deriving the equations for

belong to either of the following: S@f) or the component AJ(”“)'S. To compute these, we compare the diagonal ele-

with determinant—1 [denoted by O(m)]. Therefore, the

ments in Eq(3.7) and substitute Eq:3.9) for Q.4 1,
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exph "V —\{"=(Q,, 1DFQy);;

VL

(Qn+ 1)rj ( DFQn)rj

r=1

VE

(QrI1+1Pn+1)rj(DFQn)rj

_‘
Il
[y

1 (Qr,1+1)ru( Pn+1)uj(DFQn)rj

Il
\ZE!

r

> (Qhy0)rj(Poi1)jj(DFQp);

r=1

[since(Ppny1)yj=0V u#j]

=(Pns1)ji gl (Qh+ 1)1 (DFQp);

:(Pn+1)jj(6'n+1DFQn)jj ; (3.13

where Q,, and DF are already known an®),., is also

known from Eq.(3.12 (6{"""'s are the angle variables of ©S

Qn+1)-
If (Q'n+1DFQy);;<0 (>0), then P,.q);;=—1(1).

But this amounts to taking the absolute value of the right-

hand side of Eq(3.13. Thus,
eXp)‘J(nH)_)‘J(n):|(é'n+1DFQn)jj|- (3.19

But [using Eq.(3.9) for Q,]

2 (br’wlDF)jr(Qr,]Pn)rj

r=

r

|(br,1+lDFQn)jj|:

[

1 (ér,H—lDF)jr(erw)rs(Pn)sj

= (Pnn,-(gl Q)+ 1DF); (Qp)y;
[since(P,)sj=0V s#]]

=|(Py);;(Q}+ 1DFQ);;]

=[(Qn+1DFQ;il.

where we have used the fact thd&j;; is equal to 1 or
—1 in the last step.

Thus, for finding )\j(””)’s (j=1,...m), we have to
solve the followingm equations:

(3.19

MU D =N+ In|(Q),1DFQ));j| for j=1.2,...m
(3.16

with the followingm(m—1)/2 equations fog"*1)’s:

(Qn+1DFQ =0, 1>k, (3.17
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where 1=23,...m, k=12,...)J]-1, and where
Q/+1, Q), and SOM) are matrices.

We illustrate the working of this method by taking
=2. The S@2) matricesQ; (i=n,n+1) are parametrized
as

cosd)  sing)
— sin 0(') Cosﬁ(i) . (318)
Further, letDF be parametrized as
dfy; dfy,
DF= A
(df21 dfz)’ 519

and letR,, be parametrized a@ising\ and . for notational

simplicity)
e)\(n) *
R,= 0 e"(n) .

Here * is used to denote quantities which we are not inter-
ted in and which will not enter into our final expressions.
Substituting the above representations in Bp), we get

cosh(M+1)  *\ [ "D *
( _ sina(”“) * ) 0 eﬂ(n+1)
dfy, dfy,\/ cose™ *\[e® =
- dfy/\ —sine®™ */{ o )"

Carrying out the matrix multiplications, we get

(3.20

cosgnT D )

— singn DAY
((dfncosom)—dflgsine<“>)e“”) *) 4
—(dfyysin6™—df,, cosg™)er™ * |’ '

That is,

sin 6" VA" V= (df,,sin 6 — df,, coss™)er"”,
(3.22

(n+ D _ () in oMy

cosd e (df,,coséd dfip,sing\™)et .
(3.23

Dividing Eg. (3.22 by Eq.(3.23, we have
df,,sin g™ —df,, coss™

oD = tan | —2 2 (3.29

dfy cosf™—df,sing™)

The above equations are used to calculategtAg)’s. Con-
sequently, the matri)Q(’nH) is also fully determined.

We are now in a position to calculaxé" ™) and p("* 1)
We have from EQq(3.7),
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eh (M- \(™ * Only the first (n—1) 6M’s feature in the above set of equa-
+1) () tions. On solving thesen—1 equations, we get the firsh
0 er TH -1 6™ s in terms of the firstm—1 6M™’s, viz.,
= 0,65, ... 00,
. S U
_ (Qn+1DFQn)11 (3.25 Similarly, the next (n—2) 6(""1’s are found by solving
0 (0,1 1DFQ.) 2/ ' the following set of equations:
Equating the elements of the matrices on both sides and us- (Qn+1DFQp)i2=0, i=34,...m. (3.39

ing the arguments given prior to E(.16), we have ) .
9 g g P ®.16 Only the first (an—3) #"’s feature in the above set of

~ ; ; +1) :
A=\ (M 4 0D, .DFO/) 44, 32 equations. Here again, all ti#"*1)'s, except for the first
[(Qn+2DF Qo) (3:26 (2m—3)6"* s, get eliminated so that the resulting equa-
tions depend only on the firstm{(—1) and the next rf

(n+1)— ,(n) o) :
© p ™+ In[(Qf+1DFQ/) 2. 32D 5} ie. the first (—3) 6M's and#™*1's. On solving
. (n+1) p(n+1) (n+1)
Since Q' depends only org, and 6 in turn does not [NESE equations fofr, * %, O, 4 15 fom=3, We observe
that the above set ofnff—2) 6("*’s depends only on the

depend on eithex or u, the presence d,,,; on the right-

. - : _ (n)> P (n+1) p(n+1) (n+1)
hand side of the above equations does not create any DFOB[St (2m—3) s, Similarly, 02“"*2"(95{,“*1’ - 03
lems. The Lyapunov exponenis andu’ are given by deFﬁ”d only on tﬁel first @—6) 6™’s and so on.
o1y and GI(TTSm—)l)IZ—l depends only on the first
A [m(m—1)/2]-1 6"'s. Finally, 631, is seen to de-
A =lim——, (328  pend on allm(m—1)/2 #Ms.
n The equations for\i(“”)’s are given by
M(n) (n+1) n ~N’ ’ :
u'=lim——. (3.29 Aj =N+ In[(Qp.1DFQil, i=1,...m,
As an example of then=2 case, we consider the Henon and the Lyapunov exponents are given by
map, )\i(n)
AN =lm—, i=12,...m 3.3
Xpi1=1—axt+y,, (3.30 LN (3.39
Yn+1= DXy (3.3) Since

ThenDF(x,.y,) is given b ~ e, ,
enDF(x.yn) Is given by (@ 1DFQpi=, 3 (@ DR Qpj (338

—2ax, 1
( 0.3 0) . (3.32  A{"Y depends on the first columns @f, andQ, ; which,
in turn, depend only on the first{—1) 6M’s and #"*1)’s

, respectively. Since the first(—1) 6,.1)'s depend only on
We have computed the Lyapunov exponents using OUfhe first m—1) 6™'s, \{"*1 depends only on the first

Toe(t)%%d.tfor :.he pa;LamLeter values-1.4 antdb=0.3f. Aft:jert b%m_l) 9™'s. Similarly, \{"*? depends only on the first
iterations, the Lyapunov exponents were found t0 bg, 4y pn)rg A\ on the first 3n—6 6™'s and so on.

+

N'=0.4181, u'=—1.6221. Finally, A{™D and A"V depend on all them(m
—1)/2 8"’s. Therefore, similar to the continuous case, to
The results are in agreement with the values obtained bgolve for the firstm Lyapunov exponents, one has to solve
other methods. for only m(2n—m—1)/2 equations. The complete proof of
The partial decoupling of the equations for the angles andhe above statements is similar to the continuous-time case
the exponents, seen in the continuous-time case, is observégee Appendix B
in the discrete case, too. Equations for the full setrgfn To illustrate the application of this method to the=3
-1)/2 9](n+1)'s [j=1,2,...m(m—1)/2] are given by Eq. case, we consider the following map:
(3.12. The firstm—1 6("" s are found from the following

2
. —1— +
m—1 equations: Xnr1=1—axy+yn,

(O}, ,DFQ))i1=0i=23,...m. (3.33 Yne1=bXn,
That is 1= 2n,
n where the parameter values are same as imthe case. As
/ N . expected, the values of the three Lyapunov exponents are
kJEZl (Qns kiDFj(Qp)j1=0, i=23,...m.

(3.34 \;=0.4181, \,=—1.6221, \4=0.
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For them=4 case, we consider the following map: ; i-2
) Rij= H COSOm(nky+r | SINOmny+j-2.  (Ad)
Xp+1=1—axg+yn, =0

Elements of the second row are given by

yﬂ+l: bXn;
k _ k D L
Znt+1 1 aZﬁ'i'Wn, R2j aam(n,k)(le)’ J 12,...n (k 1) (AS)
W, 1=bz,. Elements of the remaining rows are given as follows. iFor

=3,...nh—(k=1) andj=1,2,... n—(k—1),
For the same parameter values as in the above cases, the 9

Lyapunov exponents are found to be the same as those of the R =————(R:), (AB)
Henon map, repeated twice. 00y ri-2

whereR | is the coefficient ofT, 3 cOSfyny- - in RY; .
V. CONCLUSIONS Finally, the 2<2 R"~! matrix is given by

In this paper, we have described in detail a technique for

n-1_  pn-1_
computing Lyapunov exponents of continuous-time dynami- Rz "= =Rz 7= sinfpn i, (A7)
cal systems as well as for discrete maps. This method has nel o1
several advantages over the existing methods. The minimal Rip "=Rzp 7= c0sbp(n i - (A8)

number of variables is used in the equations and the need for N . . ve di . for th
rescaling and reorthonormalization is eliminated. There are ow we are in a posmpn to give direct expressions for the
no difficulties in calculating degenerate spectra, and globa‘?lements of thexxn matrixQe SO(). The elemenn, ,
invariances of the Lyapunov spectrum can be preselygd Is given by

Furthermore, the final set of equations is reduced to a con- n—2n—(k-1) \ / n-2

venient form, simplifying gengralization .to' higher order's. an:< H E )( H R]m+_11]j ) (A9)
Another major advantage of this method is in the evaluation k=1 ji=2 m=0 m “imtl

of partial spectra. Fewer equations/operations are required . ) )
than for the full spectra, unlike some of the other existingWhereéj,—1=2 andjo,=2. Here we have used the notation
methods. Finally, this method is easily adapted to discretéHE;fz?}(lz(_l)):E?lzzﬁfz_zlz' -39, (the product
maps, while retaining all the advantages of the continuoussymbol in the preceding expression is used only for nota-

time case. tional convenience The other elements in the first row are
given by
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APPENDIX A

where Q, is the coefficient ofl[j,_}, ; COSBynm iN Q1p -
€ Elements of the second row @ are obtained from the
expressions

In this appendix, we shall give direct expressions for th
elements of a general S@), n=3 matrix.
To define a general S@] matrix, we first need to define

some auxiliaryf n—(k—1)]X[n—(k—1)] matrices denoted 9

by RK (k=1,2,...n—1). The matrices R¥s, k Qzi=55 (Qun), 1=1.2,...0. (A12)

=1,2,...n—2, are described below. Elements of the first !

row are given by Elements of the remaining rows can be written as

p(n,k) J
R\ = II cosé,, (A1) Q=55 —(Q), 1=34,...n 1=12...p,
r=m(n,k) i—1
(A13)
K _ o .
R12= SiNOm(nk) - (A2)  where Q; | is the coefficient ofl,_% cosé, in Q.

We now apply the above formulas to obtain expressions
where for a general S(8) matrix. Settingn=3 in the above for-

mulas, we first gefcf. Eq. (A3)]
m(n,k)=(k—1)(2n—k)/2, p(n,k)=k(2n—k—1)/2.

(A3) p(3,2=3, p(3,)=2, m(3,)=1. (Al4)

Forj=3,... n—(k—1), The last element of the first row is given bgf. Eq. (A9)]



6622
2 le 1 ]1 1,2

=R1RL+ RiR%, (A15)

where
R},= siné, (A16)
Ris= c0s#; sind,, (A17)
RZ,= sinds, (A18)
R3,= COSf, (A19)

Therefore, the elements of the general($0natrix are

Q1 3= sinf; sinf3+ cosé; sind, cosé;

J
Qo= 70, —— Q3= Sinf; cosh;— cosh, sin b, sin b3,
Q1= 70, (Qll)— (coselslnaz)— €0s6, c0Sb,,
d .
Q2 l:_Ql 1= — Sin 01 COSBZ,
1 (701 1

d
QZ'ZZ&_elQl’ZZ 00301 C0503+ sin 01 sin 02 sin 03 ’
(A20)

= c0s6, Sin 63— sin#, sinH, coshs,

J
Q2,3:(9_91Q1,3
-7 _ 0,)= ing
QS,l_(?_az(QS,l)_&_ez(COS 5)=—sind,,
(—sm025|n03)——

cosf, sin b3,

Qs 75:(Q3=

d P
Q3,3=(9—02( Q33 = (9_92(S|n 0, cosf3) = cosH, COSH3.

These expressions agree with the standard expressions for

SQO(3) matrix elements as expected.

APPENDIX B

Theorem.To solve for the firstm Lyapunov exponents,

only m(2n—m+1)/2 equations need to be solved.
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Lemma 1The elements of theth column of the orthogo-
nal matrixQ represented as in E¢B1) depend only on the

firstl1(2n—1—-1)/2 6;’s for |<n and alln(n—1)/2 6;’s for
I=n.
Proof. Let
T,=QUi+1Qli+2). .. qlin). (B2)
Then,
T1=Q(1'2)Q(1’3)~ . .Q(l,n)_ (B3)
Since the elements of the matric€8>?,Q(*3), ... QM

depend only on the firstn(—1) #6;'s, the elements of the

matrix T, also depend only on thesey’s, viz.,
61,65, ...,0,_1. And
T,=Q3AQE4A. .. QN (B4)
This matrix is of the form
-1 -
1 0---0
0 . (B5)
H2(0n10n+11 LRC 102n—3)
0

HereH, is an (h—1)X(n—1) matrix, whose elements de-

pend only on the next n-=2) 6’s, Vviz,
0n,00+1, .. .,00n—3 since the constituent matrices
Q(2 K} Q(2 @ .,Q" depend only on these angles. Note

that the f|rst column iS just a unit vector.
Continuing the above process,

n 2_(g(n 2n— l)Q(n 2,n) (BG)
and
Tp1=Q0 . (B7)
The matrixT, _, is of the form
1 0 --- 0 0 07
o1 --- 0 0 0
00 --- 0 0 0
0 0 (88)
00
Hn-1
O 0 --- 0

HereH, _; is a 2X 2 matrix, whose elements depend on only

Proof. We will prove the theorem in stages using a seriesype 0, Viz., 0110 SInCeQ(n 1n) depends solely on this
of lemmas. Consider the orthogonal ma@xepresented by 46| nn=1)

[cf. Eq.(2.7)]

Q=Q1AQ®)...QUtNQ2). .. Q=1 (B1)

and parametrized bg(n—1)/2 angle variables denoted by Since the first columns of, throughT, _

6, [i=1,2,...n(n—1)/2].

Now consider the matrixQ given by

Q=TT - Thy. (B9)
1 are unit vectors,

the elements of the first column Qfdepend only on the first
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(n—1) 6;’s. Since the second columns ©f throughT,_;
are unit vectors, the elements of the second columi@Q of
depend only on the firstn(—1) 6;’s and the next f
—2) 6;'s, i.e., the first (;i—3) 6;’s. Continuing the above
analysis, therf—2)th column ofQ depends only on the first
[n(n—1)/2]—1 #6,’s, while the penultimate and the last col-
umns of Q depend on all thea(n—1)/2 ¢;’s. This can be
summarized by the statement that the elements ofl the
column of the orthogonal matriQ) represented as in Eq.
(B1) depend only on the firdt(2n—1—-1)/2 6;’s for I<n
and alln(n—1)/2 6;’s for |=n. Thus the lemma is proved.

Lemma 2.The equations foi9i [(=1,2,...n(n—1)/2]
are derived from the following set af(n—1)/2 equations
[cf. Eq.(2.12]:

(QQ)jx=(QDFQ)j,
The above set of equations yielda< k) equations for a
given value ok. These (i—k) equations depend only on the
first k(2n—k—1)/2 6;'s.
Proof. From the discussion following Eq2.12), it is
clear that equations fa;’s are derived from Eq(B10). Fur-

>k (B10)

ther, sincej>k in the above set of equations, each given
value ofk yields (h—k) equations since all matrices have

dimensionsa X n. The statement that these{ k) equations
depend only on the firdt(2n—k—1)/2 6's is also easily

proved as follows. Note tha#’s appear only on the left-
hand side of Eq(B10) and

(’QQ)Jk:I:El élelk! j:k+ 1,k+ 2, A (Bll)

For a givenk, 6's appear through the term& (I
=1,2,...n), i.e., through the elements of tikh column

of Q. In the preceding lemma, we have proved thatktte
column of Q depends only on the firé(2n—k—1)/2 6;’s.

Hence thekth column ofQ depends only on the firgt(2n
—k—1)/2 bi 's. This completes the proof of the lemma.
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n n
gl anQk,n—lzk%l QunDFy;jQjn-1- (B14

All the Bi’s feature in the above equation.

Lemma 3,The equations fol,’s wheni is in the range
(k=1)(2n—k)/2+1 to k(2n—k—1)/2 (k=1,2,...n
—1) depend only on the fir&¢(2n—k—1)/2 6;’s.

Proof. To make the statement of the lemma more explicit,
we shall prove that the first n-1) 6's, viz.,
61,05, ...,6,_,, depend only on the firsn(-1) 6,s. The
next set of (—2) 6's, viz., 6,,60n.1, - . . ,0on—_3, depend
only on the first (2—3) 6#’s and so on. Finally,
Onn-1y21-2 and Orpn-1)2-1 depend only on the first
[n(n—1)/2]—1 6;’s while B[n(n,l),z] depends on all the

n(n—1)/2 6;'s.
Let
N=n(n—1)/2,
Ple(l’z),
P,=P,Q%"?),

Pnflz Pnsz(l'n),
P,=P,_1Q?9, (B15

Pan—3=P2n_4Q®",

Pn_p=Py_3Q"207 1),

Pn-1=Pyn-2Q" 2",

As a consequence of lemma 2, equations for the fitst ( Therefore,Q=Py_,Q" 1",

—1) 6’s are given by therf—1) equations

n
kal Q;iDFjkQu1, i=23,...

> QuiQu= n.
k=1

(B12)

Only the first f—1) 6;'s feature in the above set of equa-
tions.

The next O—2) 6s, Viz., 6y, Ops1s ... Oon 3 are
given by the following set ofi{—2) equations:

> QiQie= 2 QjiDFjQyz, i=3,...1.
k=1 k,j=1
(B13)

Only the first f— 1) and the next{—2) 6,’s, i.e., the first
(2n—3) 6,’s feature in the above set of equations.

This process is continued until we get the equation for

On(n—1)r2,» Which is given by

For a given value ok, we have to show that’s wheni
is in the range K—1)(2n—k)/2+1 to k(2n—k—1)/2 de-
pend only on the firsk(2n—k—1)/2 6,’s. For notational
simplicity, we denote the starting point of the rangeiof
values given above by[k], i.e.,

a[k]=(k—=1)(2n—k)/2+ 1. (B16)
The endpoint is denoted by[k], i.e.,
o[k]=k(2n—k—-1)/2. (B17)

We now work backwards fromk=n—1. For k=n—1,
a[k]=w[k]=n(n—1)/2=N. Thus we have to show th'ah
involves allg;’s. From Eq.(B14), this is easily seen since the
nth and f—1)th column ofQ appear in the equation. By
lemma 1, these columns involve @lls. Hence the statement
is proved fork=n—1.

Next, we considek=n—2. In this casea[n—2]=N
—2 andw[n—2]=N-1. Thus, there are tw@,’s in this
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range, Viz.,0,(n-2 and f,p,1+1. These are given by the n

following set of two equations: kzl (Pa[n—2]+l)k,an,n—2:gl (Parn-21+1)knAkn-2-
n n
S 0uOin 2= S Qu(DFQ)y s . i=n—1n We see thaty does not feature in the above expressions,
=y TEen ' e ’ which depend only on the firss[n—2] 6;’s and 6;’s.
(B19) For k=n—3, a[n—3]=N-5 and o[n—3]=N-3.

Thus there are three’s in this range, viz., 6, [n—3]

0 o[n-3]+1, and aa[n 3]+2- These are given by solvmg the
following set of three equations:

Let A=DFQ. Then the above equations imply

n n

> Qun-1Qn-2= > Qun-1Akn-2, (B19)

k=1 k=1 n n
N N k§=:1 QkiQk,n—?,:ijl QjiDFQkn-3, i=n—=2n-1n.
2 QunQun-2= 2, QuAin-2, (B20) (B28)

Writing this out explicitly, we get
where

n n
: " > Qun-2Qun-3= 2 Qun-2Akn-3,  (B29)
Q|<,n—1=j21 (Pn-1i,j QMY k=1 k=1

n
— (n—1n) (n—1n) .
=(Pn-1)in-1Qn-1n-1F (Pn—1)inQnn=1 kzl Qk’”lek'”f?’:kZl Qrn-1Akn-3, (B30
= (PN-1)kn-1C0SON— (Pn-1)knSiNOy. (B21)
n n
and k§=:1 Qk,an,nf3=k§=:1 Qk,nAk,nfs- (831)
n
:JZ‘ (Pn—Dkj Qi M= (Ph—Din-1Q 17" Only the firstw[n—3]=(N—3) 6,'s feature in the above
set of equations. We shall now show that the final expres-
+(Pn-D)inQU M =(Py_1)kn-1Sin by sions depend only on the firsN¢-3) 6;'s.
Similar to thek=n—-2 case,fy can be eliminated from
+ (Pn-1)k,n COSOy - (B22)  Eq.(B30) and Eq.(B3Y) to give
Multiplying Eq. (B19) by coséy and Eq.(B20) by sinéy _
and adding the two gives 2 (Py-2in-1Qun-3= 2, (Pu-2n-1Akn-3,
(Pn-1kn-1Qin-2=(Pn-Dkn-1Akn-2.  (B23) (832

n n
From Eq.(B19), we see that S (P DinQun-5= 2, (P icnin s (839

(Pn—1kn-1= E (Pn—2)k,j Q" Here (Py_2)kn_1 and (Py_1)in Can be rewritten as

=(Pn—2)kn-1. (B24)

(F’N—z)k,n—lzzl (Pn—a)k, Q3" Y
sinceQ(™ fn@ =1. Therefore, Eq(B23) becomes :

. =(Pn-3)kn-2Sinfy-2
Pno _ _o=(Pn- 1Ak 2. B25
( N Z)k,n 1Qk,n 2 ( N Z)k,n 1"k,n—2 ( ) +(PN73)k,n71COS‘9N72 (834)

Similarly, multiplying Eq.(B19) by sinéy and subtracting

from Eq. (B20) multiplied by cosdy gives and

(PNfl)k,an,nfzz(PNfl)k,nAkmfz- (B26) (PNn—1Dkn= 2 (Pn- 2)kJQ(n 20n)

Note thatN—2=a[n—2] andN—1=a[n—2]+1. There- —(p (n-2n) 4 (p (n 2n)

fore, to derive the expressions fég,[n,Z] and ba[n72]+1v it ~(Pn-2n-2Qn=zn ™ (Pu-2)inQn

is sufficient to solve the following two equatiorsf. Eq. =(PN-2)kn-2SIiNfy_1+(PN_2)knCOSON_1-

(B25) and Eq.(B26)]: | | (B35
n

n
S (Purneoikn-1Qkn2= 2 (Puin-20)kn-1Akn2, The Qy - that appears in EqB29) can be written as
&y ednm2lknixkn=27 gy AT aln=2lkn= 170 =2 (making use of the fact th@®{ " ,=1)

(B27)
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n
Qin-2= 1241 ( PN—1)k,jQJ(,nn112'n)

=(Pn-1kn-2

= (PN—Z)k,n—ZQrgn:Z?r’l@Z—’_ ( PN—Z)k,nQr(::lr:—z’Zn)

=(Pn-2)kn-2€0SON_1—(Pn-2)k,nSINON_1.
(B36)

Therefore, sidy_1X Eq. (B33) + coséy_1X Eg. (B29)
gives

n n
kzl (PN—Z)k,n—ZQk,n—BZkZl (Pn-2)kn-2Akn-3,
(B37)
and co¥_1X Eq.(B33) — sinfy_1X Eq. (B29) gives

n

2 (Py-2)inQn-3= 2 (Pu-2inPin-3- (B39

Here

n

(PN—z)k,n—ZZJZl (PN—3)k,jQJ(f1n_—22'n_l)

=(Pn-3)kn-2C0SON_»
—(Pn-3)kn-1SinOy-2. (B39
Further, co9\_,X EQq. (B37) +sinfy_»X Eq. (B32)
gives

n n
> (PN—s)k,n—sz,n—szz (PNn-3)kn-2Akn-3
k=1 k=1
(B40)

and — sinfy_»X Eq. (B37) + cosfy_,X Eq.(B32) gives

n n
gl (PN—3)k,n—1Qk|n—3:k21 (Pn=3)kn-1Akn-3-
(B41)
Therefore, the set of three equations to solve&g5_3] ,
Oain-31+1, and b,n_3742 IS given by
n n
gl (PN—s)k,n—sz,n—szgl (Pn-3)kn—2Pkn-3,
(B42)
n n
k§=:1 (PN—s)k,n—le,n—e,:lZl (Pn=3)kn-1Akn-3,
(B43)

n

kzl (PN—z)k,an,n—sszl (Pn=2)knAxn-3- (B44)

But using the fact thaQ{" 3", =Q{" 2" V=1, we get
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n
(Pn-3)kn-—2= le ( PN—4)k,jQJ(,nn132'n)

=(Pn-4)kn-2

n
J_Zl (Pn=5)k,] Qj(?ni—sz'ni Y

:(PN75)k,n*2. (845)
Similarly,
n
(PN—s)k,n—1=JZl (Prn- )i Q3
=(Pn-a)kn-1 (B46)
and
n
(Pn-2)kn= ]2::1 (PN73)k,jQJ('nn72’nfl)
=(Pn-3)kn- (B47)

Making use of the above simplifications and the identities

N—5=a[n—-3], N—-4=qa[n—-3]+1,

N—3=a[n—3]+2, (B48)

the set of equations to be solved finally reduces to

n n
IZl (Pa[n—S])k,n—ZQk,n—3:kZl (Patn—3Pkn—2Akn-3:
(B49)

n
> (Papn-a+Dkn-1Qkn-3
=]

n
:Z (Parn-31+ Dikon—1Akn-3» (B50)

k=1

n n
k§=:1 (Patn—31+2)knQin-3= |<§=:1 (Pan-31+2)knPkn—3-
(B51)

The above set of equations depends only on the éfst
—3]=(N—-3) 6’s and s as we have eliminatedy,
On-1, and 8y _, from these equations.

Similarly, for k=n—4, the four equations required to

SOIVE O 047+ Oatn—ay+1+ Oafn—a7+20 ANAO 40 _a74 5 TE-
duce to

n n
gl (Papn—a)kn—3Qun—4= kgl (Patn—apkn-3Akn—4a
(B52)
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n
gl (Patn-41+1)kn-2Qkn—4

n

:kgl (Papn—a1+Dkn—2AKn—4, (B53)
n
gl (Patn—a1+2)kn-1Qkn—4
n
= 21 (Papn—a1+2)kn—1Akn—4, (B54)

n
(Pa[n—4]+3)k,an,n—4: IZl (Patn-4143)knPrn-4-
(B55)

n
>
k=1

The above equations depend only on the fiegtn—4]
=(N—6) 6;’s and#6;’s.
Continuing in the same way untid=1, we get the final

set ofn—1 equations to solve fob;, 6., ..., 6,1 given
by

n n

kzl (P1k2Qk1= gl (PDk2A 1, (B56)
n n

2 (P2)iaQua= 2 (P, (B57)

(B58)

(B59)
n n

2 (Pn-1)inQi= 2 (Pn-1)inAs: (B0

The above equations depend only on the figtl]=n
—1 6's, and6;'s.

Therefore, we have proved that the first{1) 6,’s de-
pend only on the first{—1) #6;’s, the nextn—2 bi’s de-
pend only on the first @—3 6,’s, and so on. Finallyfy_,
and 6y_, depend only on the firstN—1) 6;’s, and BN de-
pends on aII then(n—1)/2 6;’s. To summarize, Ha[k],

ea[k]ﬂ, .+, 0,0 depend only on the firsb[k] 6;’s. This
completes the proof of the lemma.
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We now return to the proof of the main theorem. The
equation for\4 is given by

N1=(QDFQ)q; (B61)
=> > Q;iDF; Q- (B62)
j=1k=1

The ), is seen to depend only on the first colui@g,; (m
=1,2,...n) of Q. From lemma 1, the first column depends
only on the first 6—1) 6,’s, viz., 64,65, ...,0,_1. These
0,’s are found by using the differential equations for the
corresponding;’s. But, we have already proved in lemma 3
that the first 6—1) 6’'s depend only on the firstn(
—1) 6’s. Hence,\; also depends on the same.
The equation foi, is given by

(B63)

(B64)

The N\, is seen to depend only on the second column
Qmz (m=1,2,...n) of Q. From lemma 1, the second col-
umn depends only on the first 2 3) 6;'s, viz.,
0n,0h:1, - . - ,0on_3. The differential equations for the cor-
respondingg;’s, used for finding thesé,’s, also depend only
on the first (i—3) 6;’s (cf. lemma 3. Hence,\, also de-
pends on the same. Similarlyg depends only on the first
(3n—6) 6s and so on. Finally, we see that,_, and X\,
depend on alh(n—1)/2 6;’s as they depend on the last two
columns ofQ, which, in turn, depend on all;’s.

Therefore, to solve for the first Lyapunov exponent, one
has to solve onlyn equations, i.e.,i{— 1) equations for the
first (n—1) 6,'s and the equation fok,. To solve for the
first two Lyapunov exponents, one has to solven{2l)
equations, i.e., (@— 3) equations for the first (2—3) 6,'s
and the two equations for; and\,. Therefore, in general,
to solve for the firstm Lyapunov exponents, one has to solve
m(2n—m+1)/2 equations, which is always less tha(n
+1)/2 form<n. This completes the proof of the theorem.
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